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ABSTRACT

We prove that for every homogeneous and strongly locally homogeneous

Polish space X there is a Polish group admitting a transitive action on

X. We also construct an example of a homogeneous Polish space which is

not a coset space and on which no separable metrizable topological group

acts transitively.

1. Introduction

In this paper we are, among other things, interested in interesting topological

spaces X that admit an action of an interesting topological group G. Since

the action is usually required to be transitive, the topological spaces X we are

mostly interested in are homogeneous. That is, for all x, y ∈ X there is a

homeomorphism f : X → X such that f(x) = y. For a homogeneous space X

its group of homeomorphisms H(X) endowed with the discrete topology acts

transitively on X . But the discrete topology is not interesting. The compact-

open topology on H(X) is better but only works well if X is compact (or if X

is locally compact, by using its Alexandrov one-point compactification).

We were motivated by the Effros Theorem on actions of Polish groups on

Polish spaces (Effros [8]; see also [2], [14] and [25]). This theorem implies

among other things that if G is a Polish group that acts transitively on a Polish
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space X , then X is a coset space of G. Hence, as observed by Ungar [36],

every locally compact separable metrizable homogeneous space is a coset space.

Ford [11] gave an example of a homogeneous space that is not a coset space but

his example is not metrizable. In [24], a separable metrizable σ-compact space

was constructed that is not a coset space but on which some separable metrizable

topological group acts transitively. This left open the question whether every

homogeneous Polish space is a coset space, preferably of some Polish group. This

is related to Question 3 in Ancel [2]. He asked whether for every homogeneous

Polish space X there is an admissible topology on its homeomorphism group

H(X) which makes X a coset space of H(X).

If H is a closed subgroup of a topological group G, then G acts transitively

on the coset space G/H = {xH : x ∈ G} and the natural projection map

π : G → G/H is open. If G acts transitively on X , then the closed subgroup

Gx = {g ∈ G : gx = x} of G is called the stabilizer of x ∈ X . It is well-

known, and easy to prove, that G/Gx is homeomorphic to X if for every open

neighborhood of the neutral element e of G and for some x ∈ X (equivalently:

for every x ∈ X) we have that Ux is open. If the action has this property,

then it is called micro-transitive. So for a space X to be a coset space it is

necessary and sufficient that there is a topological group G acting transitively

and micro-transitively on X . The Effros Theorem implies that if both G and

X are Polish and the action is transitive, then it is micro-transitive.

The main result of this paper is the construction of the following example.

Theorem 1.1: There is a homogeneous Polish space Z with the following prop-

erty. If G is a topological group acting on Z, then there are an element z ∈ Z

and a neighborhood U of the neutral element e of G such that Uz is meager

in Z.

So an arbitrary homogeneous Polish space X need not be a coset space,

since no action on Z by a topological group is micro-transitive. This answers

Question 3 in Ancel [2] in the negative.

A topological group G is called ℵ0-bounded provided that for every neigh-

borhood U of the identity e there is a countable subset F of G such that

G = FU . It was proved by Guran that a topological group G is ℵ0-bounded if

and only if it is topologically isomorphic to a subgroup of a product of separable

metrizable groups. For a proof, see Uspenskĭı [37].
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Corollary 1.2: If G is an ℵ0-bounded topological group acting on Z, then

there is an element z ∈ Z such that its orbit Gz is meager in Z.

(In fact, all our results hold for actions that are merely separately contin-

uous. That is, for every g ∈ G the bijection x 7→ gx is a homeomorphism of

X , and for every (fixed) p ∈ G, the function γp : G→ X defined by γp(g) = gx

is continuous.)

It was asked by the author in [26, Question 4.2] whether for every homoge-

neous Polish space X there is a separable metrizable topological group acting

transitively on X . Hence, by 1.2, Z is a counterexample to this question. It

was also asked by Aarts and Oversteegen [1] whether every homogeneous Polish

space admits a product structure. This question was answered in the negative

in [27] by using highly nontrivial results of Bing and Jones [6] and Lewis [19].

We will show that Z is a much better (and simpler) counterexample. So Z is a

counterexample to several natural questions on homogeneity in the literature.

A spaceX is strongly locally homogeneous (abbreviated: SLH) if it has an

open base B such that for every B ∈ B and x, y ∈ B there is a homeomorphism

f : X → X which is supported on B (that is, f is the identity outside B) and

moves x to y. This notion is due to Ford [11]. The topological sum of the

spheres S1 and S2 is SLH, but not homogeneous. It is not hard to prove that a

connected SLH-space is homogeneous. Most of the well-known homogeneous

continua are strongly locally homogeneous: the Hilbert cube (Keller [17]), the

universal Menger continua (Bestvina [5]) and manifolds without boundaries.

The pseudo-arc is an example of a homogeneous continuum which is not SLH.

Ford [11] essentially proved that every Tychonoff homogeneous and SLH-space

X is a coset space (see also [31, Theorem 3.2]). The proof goes as follows. As

usual, βX denotes the Čech-Stone compactification of X . The subgroup

G = {g ∈ H(βX) : g(X) = X}

of the homeomorphism group of βX endowed with the compact-open topol-

ogy acts transitively on X , and by strong local homogeneity, it acts micro-

transitively as well.

In [26, Theorem 1.1] it was shown that if X is a separable metrizable, ho-

mogeneous SLH-space, then X is a coset space of some separable metrizable
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topological group. So this is Ford’s Theorem in the class of separable metriz-

able spaces. 1.1 motivates the question whether this can also be proved for the

class of Polish spaces.

Theorem 1.3: Let X be a Polish, homogeneous SLH-space. Then X is a coset

space of a Polish group.

The group G we get from the proof of [26, Theorem 1.1] is, in general, not

Polish. However, we will prove that it can be chosen to be Polishable, i.e., it

has a stronger Polish group topology.

So for separable metrizable spaces and separable metrizable groups, we have

the following implications:

coset space
8
−→ transitive action

8
−→ homogeneous space

l

transitive and micro-transitive action

.

If we restrict our attention to Polish spaces that are both homogeneous and

SLH, then the implications all reverse. Interestingly, the groups involved can

then be chosen to be Polish as well.

2. Notation

A space is Polish if it is separable and its topology is generated by a complete

metric. If A is a subset of a topological space, then A and intA denote its

closure and interior, respectively. A subset A of a topological space X is

meager in X if it is a countable union of nowhere dense sets.

All actions by topological groups on topological spaces considered in this pa-

per are assumed to be separately continuous (see §1). So for every g ∈ G the

functions x 7→ gx and x 7→ g−1x are continuous, hence they are homeomor-

phisms of X . Under mild conditions that allow the Baire Category Theorem to

do its job, separately continuous actions are continuous (see e.g., Kechris [16,

Theorem 9.14] for more information). All the notions introduced in the intro-

duction for continuous actions, are adopted for separately continuous actions.

Let G be a topological group acting on a space X . The action is transitive if

for all a, b ∈ X there is an element g ∈ G such that the homeomorphism x 7→ gx

of X takes a onto b. Hence if G acts transitively on X , then X is homogeneous.
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If p ∈ X , then γp : G → X is continuous, and surjective if and only if G acts

transitively.

The identity function on a set X is denoted by 1X .

For a spaceX we let H(X) denote the homeomorphism group of X . If A ⊆ X

then H(X |A) = {h ∈ H(X) : h(A) = A}. Observe that H(X |A) is a subgroup

of H(X). The natural action of H(X) on X is defined by the formula

(h, x) 7→ h(x) : H(X) ×X → X.

A topology on H(X) is called admissible if it makes H(X) a topological group

and makes the natural action of H(X) on X continuous. If X is compact

and metrizable, then the compact-open topology on H(X) is admissible and

Polish. If ̺ is an admissible metric on X then the formulas

ˆ̺(f, g) = max
{

̺
(

f(x), g(x)
)

: x ∈ X
}

σ(f, g) = ˆ̺(f, g) + ˆ̺(f−1, g−1)

define metrics on H(X) that generate the compact-open topology. The metric

ˆ̺ is in general not complete but is right-invariant. The metric σ is complete

but is in general neither left- nor right-invariant.

Theorem 2.1 (The Inductive Convergence Criterion): Let (X, ̺) be a compact

metric space, and for each n ∈ N, let hn ∈ H(X). If for each n we have

ˆ̺(hn+1, hn) < 2−n and

ˆ̺(hn+1, hn) < 3−n · min
{

min{̺
(

hi(x), hi(y)
)

: ̺(x, y) ≥ 1/n} : 1 ≤ i ≤ n
}

,

then h = limn→∞ hn is a homeomorphism of X .

This useful theorem is due to Fort [12] and was rediscovered by Anderson [3].

Let X be a compact space and let (hn)n be a sequence in H(X). It is clear

that for each n ∈ N the function fn = hn ◦ · · · ◦ h1 belongs to H(X). If

f = limn→∞ fn exists then it will be denoted by

lim
n→∞

hn ◦ · · · ◦ h1

and is called the infinite left product of the sequence (hn)n. It is easy to

find conditions on the sequence (hn)n which ensure that limn→∞ hn ◦ · · · ◦ h1

exists and belongs to H(X). Indeed, first observe that if f, g, h ∈ H(X) then

ˆ̺(h ◦ f, g ◦ f) = ˆ̺(h, g). This implies that

ˆ̺(hn+1 ◦ hn ◦ · · · ◦ h1, hn ◦ · · · ◦ h1) = ˆ̺(hn+1, 1X).
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Hence if the sequence
(

ˆ̺(hn, 1X)
)

n
converges rapidly to 0, then the infinite left

product of the sequence (hn)n exists and is a homeomorphism of X by 2.1.

If f is a function, then dom(f) denotes its domain. Similarly, range(f)

denotes its range. We let I denote the closed unit interval [0, 1].

A space is hereditarily disconnected if all of its (nonempty) connected

subspaces are singletons. In addition, a space X is totally disconnected if

all distinct points of X have disjoint clopen neighborhoods. It is clear that a

totally disconnected space is hereditarily disconnected, but the converse is not

true. See [9, §1.4] for more information on these notions.

3. The example

In this section we present the construction of our main example.

(A) The construction. Let △ be the Cantor set in I, and put X = △× I.

Let π1 : X → △ and π2 : X → I be the projection maps. If x ∈ X , then

x1 abbreviates π1(x). Similarly for the second coordinate. On X we use the

admissible metric

̺(x, y) = max{|x1 − y1|, |x2 − y2|}.

If φ is a function such that dom(φ) ⊆ △ and range(φ) ⊆ (0, 1), then

G(φ) =
{(

x, φ(x)
)

: x ∈ dom(φ)
}

denotes its graph.

Put

H =
{

f ∈ H(X) : f(△× {0}) = △× {0}
}

.

Observe that H is a closed subgroup of H(X), and that for every f ∈ H,

f(△×{1}) = △×{1}. Hence f is ‘order preserving’ on every component of X .

Lemma 3.1: If x, y, a, b, p, q ∈ X are such that 0 < x2 < a2 < p2 < 1, 0 < y2 <

b2 < q2 < 1, x1 = a1 = p1 and y1 = b1 = q1, then there is an element h ∈ H

such that h(x) = y, h(a) = b and h(p) = q. If in addition ̺(x, y) < ε, ̺(a, b) < ε

and ̺(p, q) < ε, then we may choose h in such a way that ˆ̺(h, 1X) < ε. Finally,

if C is a clopen subset of △ that contains both x1 = a1 = p1 and y1 = b1 = q1,

then we may choose h to be supported on C × I.
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Proof. The lemma is a triviality, so we will be brief. Let C be a clopen subset

of △ containing both x1 and y1, and let f ∈ H(△) be supported on C and

f(x1) = y1. Moreover, let g ∈ H(I) be the unique homeomorphism that sends

[0, x2] linearly onto [0, y2], [x2, a2] linearly onto [y2, b2], [a2, p2] linearly onto

[b2, q2] and [p2, 1] linearly onto [q2, 1]. Let h be f × g on C × I, and the identity

on its complement. Then h is clearly as required.

Let Φ be the collection of all pairs of functions 〈φ, φ′〉 having the following

properties:

(1) dom(φ) = dom(φ′) is a countable dense subset of △,

(2) range(φ) ∪ range(φ′) ⊆ (0, 1),

(3) φ≪ φ′, i.e., φ(d) < φ′(d) for every d ∈ dom(φ) = dom(φ′),

(4) if x, y ∈ X , x1 = y1 and x2 < y2, then for every ε > 0 there exists

d ∈ dom(φ) = dom(φ′) such that

|x1 − d| = |y1 − d| < ε, |x2 − φ(d)| < ε, |y2 − φ′(d)| < ε.

(Equivalently, ̺
(

x, (d, φ(d)
))

< ε and ̺
(

y, (d, φ′(d)
))

< ε.)

Observe that range(φ) = range(φ′) is a countable dense subset of (0, 1).

Lemma 3.2: Φ 6= ∅.

Proof. Let {Dn : n ∈ N} be a pairwise disjoint collection of countable dense

subsets of △. In addition, let {(rn, sn) : n ∈ N} enumerate all pairs of rational

numbers (r, s) in I such that r < s. Now define φ, φ′ : D =
⋃

n∈N
Dn → (0, 1)

by

φ(d) = rn ⇔ d ∈ Dn, φ′(d) = sn ⇔ d ∈ Dn (n ∈ N).

Then, clearly, 〈φ, φ′〉 ∈ Φ.

If 〈φ, φ′〉 ∈ Φ, and D = dom(φ)
(

=dom(φ′)
)

, then

U〈φ, φ′〉 =
⋃

x∈△\D

{x} × (0, 1) ∪
⋃

d∈D

{d} ×
(

φ(d), φ′(d)
)

.

We will now show that ‘all elements of Φ’ are topologically equivalent.

Proposition 3.3: Let 〈φ, φ′〉, 〈ψ, ψ′〉 ∈ Φ. Then for every compact set

K ⊆ △ \
(

dom(φ) ∪ dom(ψ)
)

there is an arbitrarily close to the identity element h ∈ H such that
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(1) h restricts to the identity on K × I,

(2) h
(

G(φ)
)

= G(ψ), h
(

G(φ′)
)

= G(ψ′), and hence h(U〈φ, φ′〉) = U〈ψ, ψ′〉.

Proof. Assume first that K = ∅, and let D = dom(φ) = dom(φ′) and

E = dom(ψ) = dom(ψ′), respectively. In addition, let {dn : n ∈ N} and

{en : n ∈ N} be faithful enumerations of D and E, respectively. For every n,

let Sn = {dn} × [φ(dn), φ′(dn)] and Tn = {en} × [ψ(en), ψ′(en)]. Finally, let

S = {Sn : n ∈ N} and T = {Tn : n ∈ N}. Observe that both S and T are

pairwise disjoint ‘dense’ collections of vertical segments.

Using the Inductive Convergence Criterion (Theorem 2.1), we construct a

sequence (hn)n in H such that its infinite left product h is a homeomorphism

and the following conditions are satisfied:

(3) hn ◦ · · · ◦ h1(Si) = h2i ◦ · · · ◦ h1(Si) ∈ T for each i and n ≥ 2i,

(4) (hn ◦ · · · ◦ h1)
−1(Ti) = (h2i+1 ◦ · · · ◦ h1)

−1(Ti) ∈ S for each i and each

n ≥ 2i+ 1.

Let h1 = 1X , assume h1, . . . , h2i−1 have been defined for certain i, and put

α = h2i−1 ◦ · · · ◦ h1.

We claim first that if π1

(

α(Si)
)

∩ π1

(

T1 ∪ · · · ∪ Ti−1

)

6= ∅ then α(Si) ∈

{T1, . . . , Ti−1}. For assume that for some j ≤ i − 1 we have π1

(

α(Si)
)

=

π1(Tj) = {ej}. Observe that by (4),

α−1(Tj) = (h2i−1 ◦ · · · ◦ h1)
−1(Tj) = (h2j+1 ◦ · · · ◦ h1)

−1(Tj) ∈ S,

and that α−1(Tj) and Si are both contained in the component {di} × I of X .

Hence α−1(Tj) = Si.

If α(Si) ∈ {T1, . . . , Ti−1}, take h2i = 1X . So assume otherwise; let {a} =

π1

(

α(Si)
)

, and observe that by the above {a} × I misses

B = (T1 ∪ · · · ∪ Ti−1) ∪ α(S1 ∪ · · · ∪ Si−1).

So there is a clopen neighborhood U2i of a in △ such that U2i × I misses B.

Since T is a ‘dense’ collection of vertical segments, there is an index k ≥ i such

that Tk is contained in U2i× I, and closely approximates α(Si). We may choose

the segment Tk so close to α(Si) that there exists a ‘small’ homeomorphism

ξ ∈ H such that ξ
(

α(Si)
)

= Tk and ξ is supported on U2i × I (Lemma 3.1).

Then h2i = ξ is clearly as required.



Vol. 165, 2008 HOMOGENEOUS SPACES AND TRANSITIVE ACTIONS 141

Put β = h2i ◦ · · · ◦ h1. If π1(Ti) ∩ π1(β(S1 ∪ · · · ∪ Si)) 6= ∅ then Ti ∈

{β(S1), . . . , β(Si)}. Assume that for some j ≤ i we have π1

(

β(Sj)
)

= π1(Ti) =

{ei}. Observe that by (3),

β(Sj) = h2i ◦ · · · ◦ h1(Sj) = h2j ◦ · · · ◦ h1(Sj) ∈ T,

and that both β(Sj) and Ti are contained in {ei} × I. Hence β(Sj) = Ti.

If Ti ∈ {β(S1), . . . , β(Si)}, take h2i+1 = 1X . So assume otherwise; by the

above we have that {ei} × I misses

B′ = (T1 ∪ · · · ∪ Ti−1) ∪ β(S1 ∪ · · · ∪ Si).

So there is a clopen neighborhood U2i+1 of ei in △ such that U2i+1 × I misses

B′. Since β(S) is just as S a ‘dense’ collection of vertical segments in X , we

may choose a segment β(Sℓ) for some ℓ > i such that β(Sℓ) ⊆ U2i+1 × I.

We may choose the segment β(Sℓ) so close to Ti that there exists a ‘small’

homeomorphism η ∈ H such that η
(

β(Sℓ)
)

= Ti and η is supported on U2i+1×I

(Lemma 3.1). Then h2i+1 = η is clearly as required.

If the approximations are chosen small enough, the conditions of the Inductive

Convergence Criterion (Theorem 2.1) are satisfied so that h = limi→∞ hi◦· · ·◦h1

exists and is a homeomorphism of X . In addition, (3) and (4) easily imply that

h(
⋃

S) =
⋃

T. Since h ∈ H, we also get h
(

G(φ)
)

= G(ψ), h
(

G(φ′)
)

= G(ψ′)

and hence h(U〈φφ′〉) = U〈ψψ′〉.

If K 6= ∅, then it is clear that we may construct the sequence (hi)i in such

a way that every hi is supported on X \ (K × I). Then h is supported on

X \ (K × I) as well.

Now fix 〈φ, φ′〉 ∈ Φ, let D = dom(φ) = dom(φ′), and consider Z = U〈φ, φ′〉.

We will prove that Z is the example we are looking for. It is clear that Z is

a Gδ-subset of X and hence is a Polish space, [23, A.6.3]. Observe that all

components of Z are homeomorphic to (0, 1) ≈ R but that they are irregularly

placed in Z.

(B) Homogeneity properties of Z. We will now prove that Z is homo-

geneous. Our geometric intuition says that in X , the space Z has ‘two types

of points’: points of which the component of Z containing it has length 1, and

points of which the component of Z containing it has length less than 1. We will

prove that these points are topologically equivalent in Z, thereby demonstrating



142 J. VAN MILL Isr. J. Math.

that Z is homogeneous. It is clear that for that we need homeomorphisms of Z

that cannot be extended to homeomorphisms of X .

Lemma 3.4: (1) If h ∈ H and 〈ϕ̄, ϕ̄′〉 ∈ Φ, then h(U〈ϕ̄, ϕ̄′〉) is of the form

U〈ψ, ψ′〉 for some 〈ψ, ψ′〉 ∈ Φ.

(2) If x, y ∈ Z are such that x1, y1 6∈ D, then there is an element h ∈ H

such that h(x) = y and h(Z) = Z.

(3) If x, y ∈ Z are such that x1, y1 ∈ D, then there is an element h ∈ H

such that h(x) = y and h(Z) = Z.

Proof. Since h permutes the components of X , 1 is trivial.

For (2), first observe that by Lemma 3.1 there exists an element h1 ∈ H such

that h1(x) = y. By (1), pick 〈ψ, ψ′〉 ∈ Φ such that h1

(

Z
)

= U〈ψ, ψ′〉. Clearly,

y1 6∈ dom(φ)∪dom(ψ). By Proposition 3.3 there is an element h2 ∈ H such that

h2

(

U〈ψ, ψ′〉
)

= Z while moreover h2(y) = y. It is now clear that h = h2 ◦ h1 is

as required.

For (3), let a =
(

x1, φ(x1)
)

, p =
(

x1, φ
′(x1)

)

, b =
(

y1, φ(y1)
)

and q =
(

y1, φ
′(y1)

)

, respectively. By Lemma 3.1 there is an element h1 ∈ H such

that h1(a) = b, h1(x) = y and h1(p) = q. Let ϕ = φ ↾ dom(φ) \ {x1} and ϕ′ =

φ′ ↾ dom(φ′) \ {x1}. Then 〈ϕ,ϕ′〉 ∈ Φ. In addition, let µ = φ ↾ dom(φ) \ {y1}

and µ′ = φ′ ↾ dom(φ′) \ {y1}. Similarly, 〈µ, µ′〉 ∈ Φ. By (1), pick 〈ψ, ψ′〉 ∈ Φ

such that U〈ψ, ψ′〉 = h1

(

U〈ϕ,ϕ′〉
)

. By Proposition 3.3, there is an element

h2 ∈ H such that h2 restricts to the identity on {y1} × I and maps U〈ψ, ψ′〉

onto U〈µ, µ′〉. It is clear that h = h2 ◦ h1 is as required.

We will now show that all components in Z are topologically the same.

Lemma 3.5: If x ∈ D and y ∈ △ \D, then there is an element h ∈ H(Z) such

that h
(

{x} ×
(

φ(x), φ′(x)
))

= {y} × (0, 1).

Proof. Let t = φ(x) and t′ = φ′(x). Observe that 0 < t < t′ < 1. We let

f : I → I be the continuous surjection that maps [0, t] onto 0, [t′, 1] onto 1 and

[t, t′] linearly onto [0, 1], i.e.,

f(s) =















0 (0 ≤ s ≤ t),

s
t′−t

− t
t′−t

(t ≤ s ≤ t′),

1 (t′ ≤ s ≤ 1).
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Then f is approximable by homeomorphisms of I. Indeed, let (tn)n be a se-

quence in (0, t) such that tn ր t, and (t′n)n a sequence in (t′, 1) such that

t′n ց t′. For every n, let fn be the unique homeomorphism of I mapping [0, tn]

linearly onto [0, 1/n], [tn, t
′
n] linearly onto [1/n, 1−1/n] and [t′n, 1] linearly onto

[1 − 1/n, 1]. Then, clearly, fn → f . Write △ \ {x} as the union of a pair-

wise disjoint sequence of nonempty clopen sets (Cn)n and define q : X → X as

follows:

q(z, s) =







(

z, fn(s)
)

(z ∈ Cn),
(

z, f(s)
)

(z = x).

q is a continuous surjection and it maps the complement of {x}× ([0, t]∪ [t′, 1])

homeomorphically onto the complement of {(x, 0), (x, 1)}. Define

ψ, ψ′ : D \ {x} → (0, 1)

so that for every z ∈ D\{x} we have that q
(

z, φ(z)
)

=
(

z, ψ(z)
)

and q
(

z, φ′(z)
)

=
(

z, ψ′(z)
)

. Observe that 〈ψ, ψ′〉 ∈ Φ and q(Z) = U〈ψ, ψ′〉. By Proposition 3.3

there is an element h ∈ H such that h(U〈ψ, ψ′〉) = U〈φ, φ′〉 = Z. Then

ξ = h ◦ q maps the complement of {x} × ([0, t] ∪ [t′, 1]) homeomorphically onto

the complement of {h(x, 0), h(x, 1)}, hence {x}× (t, t′) homeomorphically onto

{h(x, 0)} × (0, 1) and

ξ(Z) = h
(

q(Z)
)

= h(U〈ψ, ψ′〉) = U〈φ, φ′〉 = Z,

as required.

By Lemma 3.4, this evidently yields the following

Theorem 3.6: Z is a homogenous, Polish space.

4. Actions on Z

Since Z is a homogeneous topological space by Theorem 3.6, it is natural to ask

whether there are actions of topological groups on Z that are more interesting

than the natural action of the discrete group H(Z) on Z.

(A) An action on Z from its compactification X. We first note that X

gives us a natural action of a topological group on Z.
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Theorem 4.1: The natural action of the separable and metrizable group G =

{h ∈ H : h(Z) = Z} on Z has exactly two orbits, one of which is Polish and

the other one of which is meager.

Proof. This is trivial. Simply observe that G is a separable metrizable

topological group, being a subgroup of the Polish group H(X) (see §2) and

that by Lemma 3.4 it follows that (△ \ D) × (0, 1) (which is Polish) and
⋃

d∈D{d} ×
(

φ(d), φ′(d)
)

(which is meager) are the G-orbits of Z.

It is easy to prove from Proposition 3.3 that G is not closed in H(X), hence

G is not Polish. This ‘defect’ will be cured in §6 where we will show that G

is Polishable, i.e., it has a stronger Polish group topology. This means that Z

admits an ‘interesting’ action of a Polish group having exactly two orbits. Since

any action of a Polish group on Z will always have one meager orbit by 4.5

below, this is in a sense ‘best possible’.

(B) Groups that do not act on Z. We will now prove that several topo-

logical groups do not admit interesting actions on Z.

Theorem 4.2: If G is a topological group that acts on Z by a separately

continuous action, then there are an element z ∈ Z and a neighborhood U of

the neutral element e of G such that Uz is meager in Z.

Proof. It will be convenient to denote Ue the collection of all open neighbor-

hoods of e in G. Striving for a contradiction, assume that for every z ∈ Z and

every U ∈ Ue we have that Uz is not meager in Z.

Take x ∈ △ \ D and consider the point p = (x, 1/2). Let V be a closed

neighborhood of p in Z of diameter less than 1. Let W = γ−1
p (V ) and let U

be a symmetric open neighborhood of e such that U2 ⊆ W . Then Up is not

nowhere dense by our assumption, i.e., it has nonempty interior.

We claim that if q ∈ Up, then Uq ⊆ V . This is easy. Indeed, if h ∈ U , then

hq ∈ h
(

Up
)

= hUp ⊆ U2p ⊆Wp ⊆ V = V,

as required.

There is a point d ∈ D such that {d} ×
(

φ(d), φ′(d)
)

⊆ intUp. Pick an

arbitrary element t ∈
(

φ(d), φ′(d)
)

and consider the point q0 = (d, t). By

assumption, Uq0 is not meager in Z. Since {z ∈ Z : z1 ∈ D} is meager in

Z, this implies that there are elements x′ ∈ △ \ D and t′ ∈ (0, 1) such that
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(x′, t′) ∈ Uq0. Pick η ∈ U such that ηq0 = (x′, t′). Observe that

(1) η
(

{d} ×
(

φ(d), φ′(d)
))

= {x′} × (0, 1)

since η permutes the components of Z. Since {d} ×
(

φ(d), φ′(d)
)

⊆ Up, by the

above we get

(2) η
(

{d} ×
(

φ(d), φ′(d)
))

⊆ η(Up) ⊆ V.

But (1) and (2) contradict, since the diameter of {x′} × (0, 1) is 1 and the

diameter of V is less than 1.

Corollary 4.3: No topological group G acts both transitively and micro-

transitively on Z by a separately continuous action, hence Z is a homogeneous

Polish space that is not a coset space.

Corollary 4.4: The homeomorphism group H(Z) cannot be given an admis-

sible group topology making the natural action on Z micro-transitive.

This answers Question 3 in Ancel [2] in the negative.

Theorem 4.5: If G is an ℵ0-bounded topological group that acts on Z by a

separately continuous action, then there is an element z ∈ Z such that its orbit

Gz is meager in Z.

Proof. It will again be convenient to let Ue denote the collection of all open

neighborhoods of e in G. Let z ∈ Z and U ∈ Ue be as in 4.2. Since G is

ℵ0-bounded, there is a countable set F ⊆ G such that FU = G. Observe that
⋃

{fUz : f ∈ F} = FUz = Gz.

If f ∈ F , then function p 7→ fp is a homeomorphism of Z, so fUz is meager

since Uz is. Hence Gz is meager as well, F being countable.

Since Z is second category in itself, this yields:

Corollary 4.6: Z is a homogeneous Polish space on which no ℵ0-bounded

topological group acts transitively by a separately continuous action.

Since every separable metrizable topological group is clearly ℵ0-bounded, this

answers Question 4.2 in van Mill [26] in the negative.

Remark 4.7: There are models of set theory in which no Polish space is the

union of fewer than c (= continuum) many nowhere dense subsets. This is true,
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for example, under Martin’s Axiom, see Kunen [18] for more details. The proof

of Theorem 4.5 shows that in such a model a topological group G acting on

Z by a separately continuous action has very bad covering properties: it has a

neighborhood U of its neutral element such that fewer than c many translates

of U do not cover G. Observe that there are nondiscrete metrizable groups G

that act transitively on Z. Let G for example be the product of H(Z) with the

discrete topology and any infinite compact group. So such a group may locally

be very nice, but, as we showed, its global covering properties are bad.

Remark 4.8: Let G be an ℵ0-bounded topological group acting continuously on

Z. In Theorem 4.5 we proved that there is an element z ∈ Z such that its orbit

Gz is meager in Z. As Theorem 4.1 demonstrates, it is not true that every orbit

is meager.

Remark 4.9: As was observed by Mati Rubin, the proof of Theorem 4.2 can be

applied in some other cases as well.

Let G be an abstract group endowed with an ℵ0-bounded topology. By

this we mean again that the topology on G has the property that for every

neighborhood U of the identity e of G there is a countable subset F in G such

that FU = G. One has to be careful, since translations are not assumed to

be continuous, hence the open set U may be moved to something terrible by a

translation of G. Since U−1F−1 = G but U−1 need not be open, it is also not

clear that there exists a countable subset F ′ of X such that UF ′ = G. Even if

the topology on G is Lindelöf, it is not automatic that it is ℵ0-bounded.

Assume that there is a continuous action G×X → X . We claim that again

there are a neighborhood U of the neutral element e of G and a point z ∈ Z

such that Uz is meager in Z. Again take x ∈ △ \ D and consider the point

p = (x, 1/2). Let W be a closed neighborhood of p in Z of diameter less

than 1. Let U be a neighborhood of e in G and V a neighborhood of p in

Z such that UV ⊆ W (here we use that the action is continuous). There is

a point d ∈ D such that {d} ×
(

φ(d), φ′(d)
)

⊆ V . Pick an arbitrary element

t ∈
(

φ(d), φ′(d)
)

and consider the point q0 = (d, t). By assumption, Uq0 is not

meager in Z. Since {z ∈ Z : z1 ∈ D} is meager in Z, this implies that there are

elements x′ ∈ △ \D and t′ ∈ (0, 1) such that (x′, t′) ∈ Uq0. Pick η ∈ U such

that ηq0 = (x′, t′). Observe that η
(

{d} ×
(

φ(d), φ′(d)
))

= {x′} × (0, 1) since η

permutes the components of Z. Since {d} ×
(

φ(d), φ′(d)
)

⊆ V and η ∈ U , by
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the above we get η({d} ×
(

φ(d), φ′(d)
)

) ⊆W. This is the same contradiction as

in the proof of Theorem 4.2.

The proof of Theorem 4.5 can now be repeated to conclude that the orbit Gz

is meager in Z.

5. More applications

In this section we will present some more applications of the space Z.

(A) Equivariant compactifications. Let G be a topological group acting

on a space X by a continuous action. By a result of de Vries [39], X admits

a compactification γX such that the action of G on X can be extended to an

action of G on γX if and only if the right-uniformly continuous functions on

X separate the points and the closed subsets of X (such a compactification

is called equivariant). Here, a continuous real-valued function f on X is

right-uniformly continuous if for every ε > 0 there exists a neighborhood

U of the neutral element of G such that for all g ∈ U and all x ∈ X we have

|f(gx) − f(x)| < ε. Observe that for an equivariant compactification γX we

have that for every g ∈ G the homeomorphism x 7→ gx of X can be extended

to the homeomorphism y 7→ gy of γX . For locally compact G acting on X

an equivariant compactification of X exists, see de Vries [39]. Similarly if the

action is transitive, the group is ℵ0-bounded and the space is of the second

category. See Uspenskĭı [38] for details. As was shown by Megrelishvili [20], not

all actions can be ‘equivariantly compactified’, even if the group and the space

under consideration are both Polish.

Theorem 5.1: Let X be a second category, separable metrizable space. Then

the following statements are equivalent:

(a) There is a metrizable compactification γX of X such that for all x, y ∈

X there is a homeomorphism f : γX → γX such that f(x) = y and

f(X) = X .

(b) X admits a transitive continuous action by a separable metrizable topo-

logical group.

(c) X admits a transitive continuous action by an ℵ0-bounded topological

group.
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Proof. For (a) ⇒ (b), simply observe that the group G = H(γX |X) acts tran-

sitively and that the compact-open topology on H(γX) is admissible and sepa-

rable metrizable, see §2. Since (b) ⇒ (c) is trivial, all we need to observe is that

(c) ⇒ (a) is a consequence of Uspenskĭı [38, Proposition 8] and Megrelishvili [21,

Theorem 2.13] (see also [40]).

So by Theorems 4.5 and 5.1, Z does not have a metrizable compactification in

which it is ‘homogeneously’ imbedded. Interestingly, X = △× I is a metrizable

compactification of Z in which Z has only two types of points (Lemma 3.4). So

at first glance, one would guess that by making only one extra homeomorphism

of Z extendable (such a homeomorphism is provided by Lemma 3.5), one would

be able to imbed Z ‘homogeneously’ in some metrizable compactification. But,

as we demonstrated, this is impossible. That there is a homogeneous separable

metrizable space not having a metrizable compactification in which it is ‘homo-

geneously’ imbedded, answers Question 3.2 in [24] in the negative. In addition,

Z also answers Question 2.3 in [24] in the negative.

(B) Products. An interesting and unexpected consequence of the Effros The-

orem [8] is that every homogeneous locally compact separable metrizable space

is a product of two spaces, one of which is connected and the other of which

is zero-dimensional. This result is for the compact case due to Mislove and

Rogers [29, 30] and for the general case to Aarts and Oversteegen [1]. It was

asked by Aarts and Oversteegen whether every homogeneous Polish space is

the product of one of its quasi-components and a totally disconnected space.

To put this question into perspective, observe that there are homogeneous, to-

tally disconnected, 1-dimensional Polish spaces. An example of such a space is

the so-called complete Erdős space Ec, that is, the set of vectors in Hilbert

space ℓ2 all coordinates of which are irrational. See Kawamura, Oversteegen

and Tymchatyn [15] for more information. So the product Ec × S1, where S1

denotes the 1-sphere, is a homogeneous Polish space of which the components

form an upper semi-continuous decomposition whose quotient space is not zero-

dimensional (but is totally disconnected). This shows that for Polish spaces

one should aim at totally disconnected (or hereditarily disconnected) instead

of zero-dimensional factors. This question was answered in the negative in van

Mill [27] by using highly nontrivial results of Bing and Jones [6] and Lewis [19]:

the ‘complete Erdős space of pseudo-arcs’ is a counterexample. We will now

show that Z is a much better (and simpler) counterexample. Observe that the
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components of Z coincide with its quasi-components. Hence the following result

proves our claim.

Theorem 5.2: If A is hereditarily disconnected and B is connected, then Z

and A× B are not homeomorphic.

Proof. The components of A × B are precisely the sets in the collection S =
{

{a} × B : a ∈ A
}

, and the components of Z are precisely the sets in the

collection

T =
{

{x} × (0, 1) : x ∈ △ \D
}

∪
{

{d} ×
(

φ(d), φ′(d)
)

: d ∈ D
}

.

This clearly implies that Z 6≈ A×B since in the collection T there are sequences

converging to a singleton, while in the collection S this is not the case.

(C) Quasi-components versus components. As we observed above, every

locally compact separable metrizable homogeneous space is is a product of two

spaces, one of which is connected and the other of which is zero-dimensional.

This implies that in a locally compact homogeneous separable metrizable space

the component of a point coincides with the quasi-component of that point.

Aarts and Oversteegen [1, p. 4] constructed a homogeneous separable metrizable

space in which components and quasi-components do not coincide. But their

example is not Polish.

Question 5.3: LetX be a homogeneous Polish space. Do components and quasi-

components coincide in X?

6. Proof of 1.3 and more

A topological group is Polishable if it admits a stronger Polish topology that

is compatible with its group structure. An obvious necessary condition for the

Polishability of G is that G is a Borel group. But this condition is not sufficient,

see Becker and Kechris [4, p. 12] for details. If such a Polish topology exists,

then it is unique; see Kechris [16, Theorem 9.10]. The reader can find more

information on Polishable groups for example in Solecki [34].

We will first formulate a rather special condition that guarantees the Pol-

ishability of certain subgroups of Polish groups. This will then be applied in

the framework of homeomorphism groups. Related results were obtained by

Solecki [34, Theorem 2.1].
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(A) A criterion for Polishability. Let G be a topological group with

admissible complete metric ̺. In addition, let H be a subgroup of G containing

a countable collection B of subgroups such that

(A) every B ∈ B is closed in H ,

(B) for every B ∈ B there are countable subsets AB , A
′
B ⊆ H such that

H =
⋂

B∈B

ABB ∩
⋂

B∈B

BA′
B

(here closure means closure in G).

It is clear that H is an Fσδ-subset of G and hence is a Borel group. We will

prove that it is Polishable.

Let A be the (countable) subgroup of H generated by
⋃

B∈B
AB ∪A′

B. Put

F = {aBa−1 : a ∈ A,B ∈ B},

and observe that B ⊆ F.

Lemma 6.1:

(1) If y ∈ H and F ∈ F, then yFy−1 ∈ F.

(2) If F ∈ F, then AF = H = FA.

(3) H =
⋂

F∈F
AF ∩

⋂

F∈F
FA =

⋂

F∈F
HF ∩

⋂

F∈F
FH .

Proof. For (1), write F in the form aBa−1, where a ∈ A and B ∈ B. Since

H = ABB, there are v ∈ AB ⊆ A and b ∈ B such that ya = vb. But then,

clearly,

yFy−1 = yaBa−1y−1 = vbBb−1v−1 = vBv−1 ∈ F,

For (2), notice that if F ∈ F, say F = aBa−1 for certain a ∈ A and B ∈ B,

then

AF = AaBa−1 = ABa−1 ⊇ ABBa
−1 = Ha−1 = H ;

similarly, FA = H .

For (3), notice that it is clear that
⋂

B∈B

AB ∩
⋂

B∈B

BA ⊆
⋂

B∈B

HB ∩
⋂

B∈B

BH.

Pick an arbitrary x ∈
⋂

B∈B
HB ∩

⋂

B∈B
BH and fix B ∈ B. There is an

element y ∈ H such that x ∈ yB. Since y ∈ ABB, we can pick a ∈ AB and

b ∈ B such that y = ab. But then

x ∈ yB = abB = abB = aB ⊆ ABB
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since B is a subgroup of G. Hence x ∈
⋂

B∈B
ABB and, similarly, x ∈

⋂

B∈B
BA′

B. So we conclude that x ∈ H . Hence by (2) we obtain,

H ⊆
⋂

F∈F

AF ∩
⋂

F∈F

FA ⊆
⋂

F∈F

HF ∩
⋂

F∈F

FH ⊆
⋂

B∈B

HB ∩
⋂

B∈B

BH ⊆ H,

as required.

For every F ∈ F let H/F = {xF : x ∈ H} respectively H\F = {Fx : x ∈ H}

be the collections of left- and right-cosets of F in H . Observe that H/F and

H\F are countable by Lemma 6.1(2). We endow both H/F and H\F by the

discrete topology and denote the natural functions G → H/F and G → G\F

by λF respectively ρF .

Define a function φ : H →
∏

F∈F
(H/F×H\F ) by φ(x) =

(

λF (x), ρF (x)
)

F∈F
.

We endow Ξ =
∏

F∈F
(H/F ×H\F ) by the standard product topology. Ob-

serve that Ξ is Polish being a product of countably many countable discrete

spaces.

Proposition 6.2: The graph G(φ) =
{(

x, φ(x)
)

: x ∈ H
}

of φ is a closed

subset of G×Ξ and its subspace topology is compatible with the group structure

on H .

Proof. Let
(

xn, φ(xn)
)

n
be a sequence in G(φ) converging to an element (p, q) ∈

G× Ξ.

Claim 1: For every F ∈ F there exists N such that for all n,m ≥ N we have

x−1
n xm ∈ F and xnx

−1
m ∈ F .

Proof. Since H/F ×H\F is discrete and φ(xn) → q, there exists N such that

for all n,m ≥ N we have (xnF, Fxn) = φ(xn)F = qF = φ(xm)F = (xmF, Fxm),

i.e., x−1
n xm ∈ F and xnx

−1
m ∈ F .

Claim 2: p ∈ H and φ(xn) → φ(p) (hence φ(p) = q).

Proof. Pick an arbitrary F ∈ F and let N be as in Claim 1 for F . Fix M ≥ N

for a moment. Observe that for all m ≥ N we have xm ∈ xMF . Since xm → p

and xMF is closed in G and contains xMF , we get p ∈ xMF ⊆ HF . Similarly,

p ∈ FxM ⊆ FH . Hence, p ∈ H by Lemma 6.1(3).

Observe that from the fact that p ∈ H and the above calculation it fol-

lows that p ∈ xMF ∩ FxM for all M ≥ N . As a consequence, for such M ,
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φ(p)F = (pF, Fp) = (xMF, FxM ) = φ(xM )F . So we conclude that φ(xn)F →

φ(p)F for every F ∈ F and hence that φ(xn) → φ(p).

We will now prove that the topology on G(φ) is compatible with the group

structure on H . To this end, let
(

xn, φ(xn)
)

n
and

(

yn, φ(yn)
)

n
be sequences in

G(φ) converging to
(

x, φ(x)
)

and
(

y, φ(y)
)

respectively in G(φ).

Claim 3:
(

xny
−1
n , φ(xny

−1
n )

)

→
(

xy−1, φ(xy−1)
)

.

Proof. We need to prove that φ(xny
−1
n ) → φ(xy−1) or, equivalently, that for

every F ∈ F there exists N such that for all n ≥ N we have φ(xny
−1
n )F =

φ(xy−1)F . So fix F ∈ F. By Claim 1, we may pick M1 such that yny
−1 ∈ F

for every n ≥ M1. Since y−1Fy ∈ F (Lemma 6.1(1)), again by Claim 1 we

may pick M2 such that x−1
n x ∈ y−1Fy for every n ≥ M2. This means that for

n ≥ max(M1,M2) we have

ynx
−1
n xy−1 ∈ yny

−1Fyy−1 = yny
−1F = F,

i.e., xy−1 ∈ xny
−1
n F . So φ(xny

−1
n )F and φ(xy−1)F have the same first coordi-

nates. Similarly, for the second coordinates.

This completes the proof.

So G(φ) is Polish being a closed subspace of a Polish space. This means that

H is indeed Polishable.

Remark 6.3: From the proof of Proposition 6.2 it is possible to obtain an explicit

metric generating the Polish group topology on H . Indeed, let ̺ be a complete

admissible metric on G. Enumerate F as {Fi : i ∈ N}. For every i define

ϕi : H → {0, 1} by the formula

ϕi(x) =







0 (x ∈ Fi),

1 (x 6∈ Fi).

Define σ : H ×H → R by

σ(x, y) = ̺(x, y) +

∞
∑

i=1

2−iϕi(x
−1y) +

∞
∑

i=1

2−iϕi(xy
−1).

Then σ is a complete metric generating the Polish group topology on H . It is

possible to prove this directly, but the essential ingredients of that proof are

identical to the ones above.
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(B) Application to homeomorphism groups. Let X be homogeneous, Pol-

ish and SLH. Using the above criterion, we will prove that there is a Polish group

admitting a transitive action on X .

By van Mill [26, Corollary 3.2], there are a metrizable compactification γX of

X and a countable collection W open subsets of γX and a countable subgroup

F of H(γX |X) such that

(1) γX ∈ W and W ↾ X is a base of X ,

(2) W is invariant under F ,

(3) for all W ∈ W, x, y ∈ W ∩ X and ε > 0, there exist A,B ∈ W and

f ∈ F with

(i) A ∪B ⊆W , x ∈ A, y ∈ B,

(ii) diamA < ε, diamB < ε,

(iii) f is supported on W and f(A) = B.

Since X is Polish, there is a countable family of compacta A with
⋃

A =

γX \X . Put B = {f(A) : f ∈ F} and observe that
⋃

B = γX \X . Let

H = {f ∈ H(γX) : (∀B ∈ B)(∃ g, h ∈ F )(f↾B = g↾B& f−1↾B = h↾B)}.

Observe that if f ∈ H and B ∈ B, then f(B), f−1(B) ∈ B. In addition, F ⊆ H .

Lemma 6.4: H is a subgroup of H(γX |X) and for all x, y ∈ X there exists

f ∈ H such that f(x) = y.

Proof. That H is a subgroup of H(γX |X) is trivial since F is a subgroup of

H(γX |X) and every f ∈ F permutes B.

Now take arbitrary x, y ∈ X . By [26, Lemma 3.4] there are a sequence (gn)n

in F and a decreasing neighborhood base (An)n of x in γX such that

(1) The infinite left-product f = limn→∞ gn ◦ · · · ◦ g1 is a homeomorphism

of γX such that f(x) = y,

(2) f(X) = X ,

(3) if p 6∈ An, then f(p) = gn ◦ · · · ◦ g1(p).

We claim that f ∈ H . To prove this, take an arbitrary B ∈ B. There exists i

such that B ∩Ai = ∅ since B ⊆ γX \X and x ∈ X . Hence by (3), f↾B = g↾B

for some g ∈ F . There also exists j such that f−1(B) ∩ Aj = ∅. Hence,

again by (3), f↾f−1(B) = h↾f−1(B) for some h ∈ F . But this means that

f−1↾B = h−1↾B.
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It is not difficult to prove that H is an Fσδ-subgroup of H(γX). In addition,

it acts transitively on X by 6.4. Unfortunately, it need not be Polish. To

see this, let X = S2 \ D, where D is any countable dense subset of the 2-

sphere S2. It is not hard to show that we can arrange H to be the space of

all homeomorphisms of S2 that map D onto D. But that space was shown by

Dijkstra and van Mill [7] to be homeomorphic to Erdős space, [10], i.e., the first

category ‘rational’ Hilbert space.

Our ‘plan’ is to prove that H is Polishable. This suffices since H with its new

Polish topology acts transitively on X as well. We will show that H satisfies

the special conditions that were considered earlier in this section.

For every B ∈ B we let

HB = {h ∈ H : h↾B = 1B},

where 1B denotes the identity on B. It is clear that HB is a closed subgroup of

H .

Lemma 6.5: H =
⋂

B∈B
FHB ∩

⋂

B∈B
HBF .

Proof. Indeed, let h ∈ H and B ∈ B be arbitrary. There is by assumption

an element f ∈ F such that h↾B = f↾B. Hence h ∈ fHB ⊆ FHB, i.e.,

H ⊆
⋂

B∈B
FHB. Similarly, H ⊆

⋂

B∈B
HBF .

Conversely, let h ∈
⋂

B∈B
FHB be arbitrary. Fix B ∈ B. There exist f ∈ F

and g ∈ HB such that h = f ◦ g. Clearly, g↾B = 1B, hence h↾B = f↾B.

Similarly, if h ∈
⋂

B∈B
HBF , then for every B ∈ B, h−1↾B = f−1↾B for certain

f ∈ F . We conclude that h ∈ H .

This completes the proof of the following result.

Theorem 6.6: Every homogeneous, Polish and SLH-space X admits a transi-

tive continuous action by a Polish group.

Remark 6.7: The referee pointed out the following approach to Theorem 6.6.

Let X be a homogeneous Polish SLH-space. By [26] there is a separable metriz-

able group H acting transitively on X . Consider the completion Ĥ of H . It is

a Polish group, so if the action of H on X could be extended to an action of

Ĥ on X , then Theorem 6.6 follows. But this approach unfortunately does not

work. The group H we get from the proof of Theorem 1.1 in [26] is of the form

H(γX |X) for some metrizable compactification γX ofX . Hence there are many
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cases in which H is dense in H(γX). For example, let X be the pseudo-interior

of the Hilbert cube Q and let γX be Q. Then Ĥ is H(Q) which does not act

on X .

(C) Application to Z. Let us return to Theorem 4.1, where we showed that

the natural action of the separable and metrizable group G = H(X |Z) on Z has

exactly two orbits, one of which is Polish and the other one is meager. We will

prove that our criterion implies that G is Polishable.

To this end, enumerate D = dom(φ) = dom(φ′) as {dn : n ∈ N}. By Lemma

3.4(3) we may fix a countable subgroup F of G such that for all n,m ∈ N there

exists f ∈ F such that

f({dn} × [φ(dn), φ′(dn)]) = {dm} × [φ(dm), φ′(dm)]

(any f ∈ G that maps an arbitrary point from {dn} ×
(

φ(dn), φ′(dn)
)

to an

arbitrary point from {dm} ×
(

φ(dm), φ′(dm)
)

will do). Now for every n, put

Gn = {f ∈ G : f({dn} × [φ(dn), φ′(dn)]) = {dn} × [φ(dn), φ′(dn)]}.

Then, clearly, Gn is closed in G. A straightforward calculation, cf., the proof of

Lemma 6.5, shows that

G =
⋂

n∈N

FGn ∩
⋂

n∈N

GnF

(here closure means closure in the Polish group H(X)). Hence G is Polishable

by our criterion. This completes the proof of the following result.

Theorem 6.8: There is a Polish group G acting on Z having precisely two

G-orbits, one of which is Polish and the other one of which is meager.

Observe that by Corollary 4.6, this is ‘best possible’.

7. Questions

In this section we state some open problems that were motivated by the results

in this paper.

(A) Complexity of Polish group actions in terms of the number of

orbits. Corollary 4.6 and Theorem 6.8 suggest the following.
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Definition 7.1: Let X be a space and n ∈ N. Say that G- dim(X) ≤ n if there is

a Polish group G acting continuously on X such that X has at most n G-orbits.

Moreover, let G- dim(X) = n if G- dim(X) ≤ n but G- dim(X) 6≤ n−1. Finally,

let G- dim(X) = ∞ if G- dim(X) 6≤ n for every n ∈ N.

Every Polish group G clearly has G- dim(G) = 1, and the celebrated Effros

Theorem from [8] implies the following characterization result, see §1.

Proposition 7.1: Let X be a second category separable metrizable space.

Then the following statements are equivalent:

(a) G-dim(X) = 1,

(b) X is a coset space of some Polish group.

Observe that Z is a homogeneous Polish space with G- dim(Z) = 2. This

motivates the following problem:

Question 7.2: Is there for every n ≥ 3 a homogeneous Polish space Zn for which

G- dim(Zn) = n?

(B) ComplexityofPolish group actions in termsof isometry groups.

It is a well-known result of Teleman [35] that every topological group G is iso-

morphic to a subgroup of the isometry group IsoB of some Banach space B

(here IsoB is endowed with the strong operator topology). Megrelishvili [22]

proved that if G is the (Polish) group of all orientation preserving homeomor-

phisms of the closed unit interval, then Teleman’s B cannot be chosen to be

reflexive (this was strengthened recently in Glasner and Megrelishvili [13]: B

can not even be Asplund). This motivates the following problem.

Question 7.3: Let X be a homogeneous Polish space on which some Polish

group acts transitively. Is there a Polish group acting transitively on X which

is isomorphic to a subgroup of IsoH for some Hilbert space H?

It is very likely that the answer to this question is in the negative, but there

do not seem to be known techniques that can be used to solve it. The referee

noted that a positive answer would follow from a positive answer to the following

question due to Kechris [32, Question 17 in §5.2]: Is every Polish group a

topological factor-group of a subgroup of the unitary group U(ℓ2) with the strong

topology?
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(C) Improving group topologies. A separable and metrizable space is an-

alytic if it is a continuous image of the space of irrational numbers. Every

absolute Borel set is analytic, but the converse is not true. In [28], an exam-

ple was constructed of a homogeneous analytic space on which some separable

and metrizable group acts transitively, but on which no analytic group acts

transitively. This suggests the following problem.

Question 7.4: Let X be a homogeneous Polish space on which some separable

metrizable group acts transitively. Is there a Polish (analytic) group that acts

transitively on X?

(D) Reconstructing Z. Under mild conditions, locally compact spaces can

be reconstructed from the algebraic properties of their groups of homeomor-

phisms (Rubin [33]). This suggests the following problem.

Question 7.5: Is it possible to reconstruct Z from the algebraic properties of its

group of homeomorphisms H(Z)?
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